
Theoret. Chim. Acta (Berl.) 62, 223-244 (1983) 

THEORETICA CHIMICA ACTA 

�9 Springer-Verlag 1983 

On The Transferability of Fock Matrix Elements 

Brian J. Duke  

Chemistry Department, University of Lancaster, Lancaster, U.K. 

Brian O 'Lea ry  

Chemistry Department, University of Alabama in Birmingham, Birmingham, Alabama, U.S.A. 

The transferability of Fock matrix elements in the linear combination of 
atomic orbitals molecular orbital scheme is analysed using localized orbitals. 
It is shown that this transferability is dependent  on the transferability of 
these localized orbitals and the neglect of long-range contributions from 
partially cancelling Coulomb nuclear attraction and electron repulsion terms. 
A theoretical basis is thus provided for the simulated ab initio molecular 
orbital and related methods.  Various corrections previously introduced in an 
ad hoc manner  are shown to be justified. Transferabili ty in both the closed 
shell and open shell schemes is analysed. 
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1. Introduction 

The last two decades or so have witnessed the development  of a number  of 
transferability methods for approximating molecular  orbital wave functions. A 
number  of these methods utilize the transferability of matrix elements over the 
Fock opera tor  f rom a small "pa t t e rn"  molecule to a " ta rge t"  molecule. For 
~--electron systems there is the study by Orloff and Fitts [1] and whilst the 
Non-Empir ical  Molecular Orbital  (NEMO) method of Newton et al. [2] utilizes 
the transferability of only on-diagonal  elements,  the Simulated Ab  initio 
Molecular Orbital  (SAMO) method introduced by Eilers and Whi tman [3] 
involves the transferability of both  on- and off-diagonal Fock matrix elements. 
Deplus et al. [4] have proposed a related method which uses orthogonalized 
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hybrid orbitals whilst Leroy and Peeters [5] have used a basis of localized orbitals. 
Each of these methods was extensively reviewed in 1975 [6]. The programs are 
available through Q.C.P.E. [7]. 

The SAMO method has been applied to hydrocarbons [3], polymers [8], ben- 
zenoid aromatic hydrocarbons [9], cyclohexanes [10], polar groups, ionic 
molecules and orthogonalized basis sets [ 11 ], open shell radicals [12, 13], polynu- 
clear aromatic hydrocarbons [14], second row elements [15] and pyrazine [16]. 
A resolvent technique has also been developed for the SAMO method [17] and 
a combination of SAMO and semi-empirical methods [18] have been used to 
evaluate ionization energies. 

In addition to these developments the transferability method using a basis set 
of localized orbitals has been further developed with applications to heteroatom 
derivatives [19] and polyethylene [20]. A method involving the transferability 
of atomic potentials has been shown to give similar results [21]. The transferability 
of Fick matrix elements within semi-empirical methods has also been demon- 
strated and a semi-empirical version of SAMO developed [22]. 

The common feature of all methods based on transferability has, up to now, 
been their reliance upon the use of minimum basis sets occasionally improved 
with polarization functions. However, the use of SAMO with more extended 
basis sets has recently been reported [23] and further work in this area is in 
progress. 

In spite of its wide use, and the fact that the necessary approach was outlined 
many years ago by Hall [24], to date, no attempt has been made to justify this 
transferability of Fock matrix elements. 

2. A Justification of Transferability for Closed Shell Systems 

Justification of the transferability of Fock matrix elements necessitates analysis 
of the error arising in the transferred element i.e. the difference between the 
correct ab  ini t io  value for the Fock matrix elements F,r~ for the target molecule 
T and its simulated value Fev obtained by transference from a pattern molecule 
P. 

For both the target and pattern molecule the wave equation is given by Eq. (1) 

0 = A { & l ( 1 ) a ( 1 ) C l ( 2 ) f l ( 2 ) "  " " &ml2(m - 1)a(m - 1 ) & m l E ( m ) f l ( m ) }  (1) 

where the one-electron molecular orbitals 0i are expanded in the usual "linear 
combination of atomic orbitals" (L.C.A.O.) approach. 

01 = Y. C~,X~ (2) 
p.=l 

and A is the antisymmetrizer. The energy of P is minimized using the usual 
molecular Hamiltonian 

I-?I = ~ l~(i)+ Y. 1/r,j (3) 
i = 1  i>j 
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where l / r ,  is the electron repulsion term and/~(i) is the one electron term given 
by 

l~(i)  ~ ~ ZA = -~Vi - E  - - .  (4) 
A rAi  

Here, the first term represents kinetic energy and the second term is the sum 
of nuclear attraction terms over the nuclei labelled A. The coefficients C,~ in 
the expansion of &~ are given by the matrix eigenvalue equation (Roothaan 
(25)-  Hall (26) equation) 

F c  = s c x  (5) 

S ~  = (tz iv). (6) 

Here, the elements of F are given by 

A r A  i i 

where we make the usual definitions 

(7) 

(t~ l u) = J dr,x~(1)X.(1) (8) 

I dr~ X~(1)V2X.(1) (9) T~v=<x.I -l~vdxo>2 =_�89 

I . Z A  . (IzIZAIv) = dr i )~( t ) - -Xv(~)  (10) 
ra rA 

(ab [cd> = f d'rl dr2 a ( 1 ) c ( 2 ) 1 b ( 1 )  a(2). (11) 
d r12 

It is just this F ~  of Eq. (7) that we are concerned with transferring. However, 
any direct comparison of F~ P with F ~ ,  the Fock elements arising from the 
pattern and target molecules respectively, is difficult because all of the orbitals 
&i in Eq. (7) will be delocalized over very different molecular frameworks. For 
this reason it is desirable to consider the Fock matrix elements in terms of some 
more localized functions. 

The molecular wave function of Eq. (1) can readily be transferred into localized 
orbitals 0i such that 

= A{Ota  (1)0,3 (2). �9 �9 Om/2a (m - 1 )0m/218  (m)}. (12) 

The orbitals 0~ can be obtained by a variety of techniques (6) and may or may 
not be mutually orthogonal. In our case they are chosen in such a way as to be 
orthogonal, the specific technique being unimportant 

(0, l 0,> = 6,;. (13) 
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Under  this unitary transformation of molecular orbitals only, the expression for 
F,~ becomes 

F ~  = T ~  - ~, (tz I ~ I t" ) + 2 Y. (tx v t 0~0~) - ~, (lz O~ ] uOi ). ( 14 ) 
A rA i 

A proof of the equivalence of expressions (7) and (14) is given in Appendix A. 

It should be stressed that we introduce localized orbitals merely to facilitate the 
comparison of FRy and FT~. It is not our purpose here to generate the eigenvalue 
equation whose solutions are localized orbitals. 

In Fig. 1, where the simulation of octane from butane is illustrated, a particular 
matrix element F ~  is shown. To simulate F~< T we select Fev from a specific 
pattern molecule, in this case always butane, with a geometry chosen to exactly 
match the configuration found in the target molecule. This choice defines a 
segment S of atoms and bonds common to both target and pattern molecule. 

Although the expressions for Fev and F ,~  are similar, the sums over A and i 
will be over different atoms and localized orbitals. These sums are now split into 
those which are inside and those which are outside the common segment S. The 
following equations are the Fock matrix elements for the pattern and target 
where integrals and orbitals have been labelled P and T respectively. 

F ~  =TP~ - E <~IZ~l~>"+2 E t,<u~lofof>-E 4<~o~1~o~) 
A~S rA i~s i~s 

E (#xlZAIv) P + 2  E l,(t~v OeO p~ - , , , -  E t , < ~ o F l ~ , o f )  (15) 
A~S rA i~S i~S 

F ~  = T ~ v -  ~, (I~]ZAIu)T + 2 ~, l~(tXUlofoT) - E l~(t~oftuo T) 
AeS rA i~s iES 

- E (tzlZAIv)'r+2 E l,(#zv OTOT~, , , -  E t,(goTI~,oT>. (16) 
A~'S rA  i~S ir 

Here,  summation ~ S and ~S indicates summation over atoms and localized 
orbitals which are respectively inside and outside the segment S. Where orbitals 
lie across the S boundary the appropriate term must be split between the two 
summations. This is covered by the introduction of the term li which is an 

H H H ~ H H H H 
H \ / ,  \ / ' - "  \ /  , \ /  
\c~C ,,':Z-c~C~cJC ,'%c ~C , 
/ \  ' / \  I X . - .  : / \  H 

H H H H H H(H), H H 

H ('~)~ H H 
H , \?-" k./, 

',,.c~C~c~<:;,( P 
" / \  ix,.--,.' i-I 
H H H H(H), " 

Fig. 1. Illustration of a common segment S for 
transferability of F~ from pattern P to target T 
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Fi~. 2. Illustration of the use of the l~ term associated with a 
given Oi 

H H H ( ~ H  H H H 
M/0, \ / -  Xc/ 0~\/ H , c&, ' / t ' . . o~  0 \.." .>~v. 

\c / ?~ c /  \ c  ,,X'c(Y ~H 
H H H H H I H~H 

occupation number representing the number of electrons counted in a localized 
orbital. When 0i lies completely inside or completely outside the segment S, 
Ii = 1. However,  when 0i lies across the segment boundary l~ = ~. This usage is 
illustrated in Fig. 2. 

In the sum inside the segment lb = 1 and for 0a, which spans the segment boundary, 
l~ = �89 In the sum outside the segment l~ = 1 and l~ = �89 

Choosing identical geometries and basis sets for P and T and selecting the 
segment S such that the atoms it contains are common to both the pattern and 
target (the same atoms A appearing in the same positions in both P and T) 
results in the following equalities 

V ~  = vr~ (17) 

E <~lzAIv> ~= ~ <~lZAl.> T, (18) 
A ~ S  rA A e S  rA 

Further,  since localized orbitals are localized in bond or core regions and are 
themselves transferable for similar chemical environments (6), a condition likely 
to be met to a high degree of accuracy within the SAMO method, we have 

oP-~OrcS  (19) 

and thus: 

2 Y~ l,(g. lo~,of)-~2 E I,(g~.IoYoY) 
ieS i t S  

(20) 

~, l,(gO~] uO~)~ ~, l , (gofi  uOT). (21) 
i~S i~S 

These relationships are also based on the choice of an identical basis set for 
both pattern and target molecule. 

Use of Eqs. (17) to (21) with Eqs. (15) and (16) results in the considerably 
simplified expression for the difference between F~r~ and FP~ : 

F r ~ - F P ~ = 2  Y. l,(~,,,IoYoY>- E (**lZal~> ~ 
i ~ S  Ae2S rA  

- 2  2 z,<~.le,%~>+ 2 <~lZAI,..) '~ 
i~S A ~ S  rA  

- 3~ li(~Or~[uOr)+ ~, li(l~OPtvOf). (22) 
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The exchange terms occurring in Eq. (22) are small since such sums converge 
rapidly with increasing distance of 0i from the orbital pair X, and Xv. From the 
Mulliken approximation (27) we have 

(txO~ [ vOi) o~ S ~,o,S,,o, (23) 
and both these terms are small. All 0~ are outside S so the exchange terms can 
be more readily neglected if the pattern molecule for F,~ is selected such that 
X, and X~ are distant from the boundary of S. This has always been part of the 
SAMO methodology. Hence 

Y. 4<~efl,,eP)- Y, t,(~,eTI~,eT) = o .  (24) 
i ~S  i~S  

The nuclear attraction terms appearing in Eq. (22) are slow to converge with 
increasing distance of atom A from the orbitals X~ and X~. Hence, their sums 
for the target and pattern molecule will not cancel; a similar situation holds for 
the Coulomb terms. However, the orbital pair X~ and X~, since they are inside 
the segment, will be at some distance from 0 r or 0 P which are located outside 
the segment, hence the following approximate equalities are likely to hold: 

Y. (~lZ"l,') ~=2 E t,(~,'leSeS) (25) 
AC:S FA i~S 

E < lZAl )" =2  E l,(/xv IO~eO~e). (26) 
A ~ S  rA  i~S 

These equations themselves arise from the approximate equalities of each nuclear 
attraction term with a sum of electron repulsion terms for the electron surround- 
ing each atom 

ZA(p,[LIt.')~2 ~ l~(tzvlO~Oi). (27) 
rA  i~ A  

We illustrate this point by means of Fig. 3. 

As can be seen from Figure 3, the ll terms of Eq. (27) arise from the division 
of the localized orbitals between atoms. Since the orbitals 02 to 05 are localized 

_.,t a" t t . . ~  ~ _ J "  

I l i I 

, ,  , ......-- RA.~ / 

' < (.. 
" v  

I 1,,. 

Fig. 3. Illustration of the division of localized orbitals surrounding atom A in a hydrocarbon 
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in bonds with their respective electron repulsion terms being divided between 
A and the appropriate neighbouring atom, their associated li values are 

12 = I3 = 14 = 15 = �89 

The orbital 01 since it is localized in the core on atom A will have 

ll = 1. 

If A is approximately electrically neutral the number of electron repulsion terms 
counted in Eq. (27) will be equal to ZA. 

For a diagonal term, if rA is large, both the electron attraction term and the sum 
of electron repulsion terms will approach the classical limit. That is 

1 ZA 

ra ieA RA~ 
(28) 

where RA~. is the distance from atom A to the centre of orbital/z. Similarly, the 
off diagonal terms can be reduced to the classical limit using the Mulliken 
approximation 

X,~X. = -~{X,~X,~ +X~X~} (29) 

y (~,. Io,o,)=~-~2 y l ,{(~ [o,o,)+(,.. Io,o,)} 
i E A  i ~ A  

Z A _ [ 1  1 )  
=y .qK-Z+g21. 

The equalities in Eqs. (28) and (30) only hold if the "number of electrons" or 
atomic population around A,  NA is approximately equal to Za. However, some 
cancellation will occur in the term by term errors in the sums occurring in Eqs. 
(25) and (26) for those cases where atomic charges alternate along a chain going 
away from the segment S. 

From the above analysis it is clear that direct transferability for ionic molecules 
is not possible where a neutral pattern molecule is used for Fock matrix elements 
distant from the ionic charge. In this case the ionic charge will affect the terms 
outside the segment. This situation was studied previously (11) and an empirical 
correction term introduced. 

(32) 
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Here,  qP is a Mulliken charge transferred from the ionic pattern to the region 
of the target outside the segment defined for F ~ .  It can now be seen that this 
correction follows from the present analysis. 

For an atom A outside the segment 

2 ~ l~(lzv [0~0~ )~NA(I~ ILIa,) (33) 
ra 

where NA is a Mulliken population. Thus we have: 

ie~S A ~ S  rA  

~,s2 (NA--ZA)(~IIlV) r 

=--Zq~ (~ II1~> T (34) 
rA 

where we define qA, the Mulliken atomic charge as 

qA = (ZA --NA). (35) 

3. A Justification of Transferability for Open Shell Systems 

The SAMO method has been applied to open shell systems using the spin 
unres t r ic ted-Unres t r ic ted  Har t ree-Fock  (UHF) or Different Orbitals for 
Different Spins (DODS) [12, 28] - and the spin restricted - Restricted Hart ree  
Fock (RHF) [13, 29] formalisms. In each case the chosen radical was rather 
specialized in that its odd electron was localized in one region of the target 
molecule. With this constraint it is possible to transfer the matrix elements for 
the radical region of the target from a similar open shell calculation on a small 
pattern radical; the more distant matrix elements are transferred from a closed 
shell calculation. We analyse the approach in terms of each of the above 
formalisms as follows: 

3.1. Spin Unrestricted 

In the spin unrestricted formalism, the wave function is given by 

4/=A{~b~(1)4~(2) �9 �9 �9 da~(m~)4a~(m,~ + 1)d~2~ (rn~ + 2 ) . . .  4 ~  (m~ +me)  
(36) 

where there are rn~ electrons with a spin and m e electrons of/3 spin. In the 
specialized cases studied 

m~ = m~ + 1. (37) 

The set of orbitals 4~ ? are different from the set 4~ f and are given by 

~iX~ (38) 
u.=l 
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= C . i x . .  (39) 

The coefficients at the ab  in i t io  level are given by the solutions of the coupled 
matrix equations 

F ~ C  ~ = S C ~ k  ~ (40) 

F ~ C  ~ = S C ~ k  ~ (41) 

where S is defined by equation (6), k ~ a n d / ~  are diagonal matrices of orbital 
energies for the two sets of orbitals and 

ct r t t  

F A  i = 1 

mB 

+ ~'. ( /xu[~f4~>- ~ ( ~ [ t , q ~ ' ) .  (42) 
i ~ 1  i = 1  

The element F ~  is defined similarly to Eq. (42), the difference being that ~ is 
replaced by/3 and/3 by a throughout the equation, All terms in Eq. (42) are 
defined previously by Eqs. (9)-(11). 

The two sets &~ and &~ can be independently transferred into the localized 
orbital sets 0~' and 02 by means of the transformations 

0 ~ = L ~  ~ (43) 

0 ~ = L~t~ ~ (44) 

respectively, where, as before, L ~ and L ~ are unitary. Under these transforma- 
tions Eqs. (36) and (42) become 

dJ = A { O ~  ~ t3 �9 �9 �9 O.,~(m~)01 (m~ + 1 ) .  �9 �9 O~o(m~ + m ~ )  ( 4 5 )  

nat3 

A rA i = 1  i = 1  i = l  (46) 

The transference of matrix elements is shown in Fig. 4. 

From Fig. 4 we see that since the odd electron is localized at the right of the 
target molecule, the localized pattern orbitals 07, and 0~e will only differ 
significantly in this region�9 For matrix elements not obtainable from the open- 
shell P, it was assumed that 

F ~  r - F  ~ r -  ~,~ (47) 

CH2 CH2 OPEN SHELL T CH3~CH2/~CH2 
OH2 CH2 

/ \ / \ 

CH3 OH3 OH3 CH2 

CLOSED SHELL P OPEN SHELL P 

Fig. 4. Illustration of the transfer of matrix elements for open-shell systems 
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and that each could be obtained by transference from a closed shell P. The two 
cases are now dealt with separately. 

3.1.1. Open shell P 

A pair of matrix elements F~,~ and F ~  are obtained from r~,~ and F~v r. This 
choice defines a common segment S entirely similar to the closed shell cases. 
Eq. (46) for F ~  and F~  P can be separated with terms inside and outside S. As 
was the case for closed shell systems, the terms T,,~ and summations inside S 
are now either identical or approximately equal for F ~  r and F ~  since 

0 .~ P ~ O .f'. (48) 

The remaining error,  analogous to Eq. (22) for the closed shell case, is 

F,~T F,~P y. ~T o~r 
, . , -  ... = z,(~,.Io, o,  ) +  y t , ( ~ . l o ~ , ~ o f f ) -  E 6~lZal")  T 

i~S i~S A ~ S  r A  

- - o, o, 5§ 2 (~1~1,~> 
i~S i~S  A ~ S  A 

--  1 / o a P  I l ) O a P \  2 ti(~o?TL~,o?T)+2 a ~ ,  I i ~. 
i~S i~S 

(49) 

As with the closed shell case, li = 1 when 0~ lies completely inside or completely 
outside the segment S. However,  when 01 lies across the segment boundary li = �89 
Since the odd electron is inside S the extra term in the summation over 0~ 
compared with the summation over 0~ is already taken care of in the sums 
within S. The sums over i in Eq. (49) will thus all have the same number of 
electrons. By an argument entirely analogous to the closed shell case - exchange 
terms are small and Coulomb terms cancel nuclear attraction terms atom by 
atom. Thus, Eq. (49) reduces to 

F a T  12c~e 0 ~v - - ~  ~ ~.  ( 5 0 )  

3.1.2. Closed shell P 

The choice of Fev for both F~ r and F ~  r again defines a common segment S. 
Sums can be defined inside and outside S as follows: 

o~ F ' ~ T = T . v  - ~ <~lZAl,,)T§ 2 e,<~,,I i i / 

~v , ~ s  r A  i ~ s  

+ Y t , ( . , . I o f ~ o f ~ )  - 5" t , ( . o r T l ~ o r ~ )  
i~S i~S 

A ~ S  r A  i~S  

, ( 5 1 )  
i~'S i~S  



Transferability of Fock Matrix Elements 

F ~  = T,., ,- Y'. (~lZAl,.,>" + y_, Z,<~,,I07~O? T) 
A ~ S  rA i ~ S  

233 

+ 2 t,(.,, l o~,To? ~)-  E t,(.o~Tl~'of ~) 
i~S  i~S  

+ 2 t,(u~,, I o?ToU)-  E t,( .ofT[,.of ~) 
ie~s ie~S 

Fp ZA p =T~, , -  5-'. (/z[--lu) +2 E l~(tzvlOe~O~) 
A ~ S  rA i ~ S  

(52) 

- E  2 < lZAn ,> 
iES  A ~ S  ra 

+ 2 z,(~, 10'20f)- E z,(~ofl ~of). (53) 
i ~ S  i~S  

Eqs. (51) and (52) give 

F ; r ~ - F ~  = E I'(~o~T[vo~T) - E l,(~o~rluo~ ' )  
i~S  i~S  

+ E Z,(~0?TI ~'o~T) - Y. Z,(~07'TI ~'07T)" (54) 
i~S  i~S  

The orbitals O~ and Of ~ S will be very similar and the exchange terms for O~ ~ S 
will be small and also practically cancel. Hence 

F,~T ..~ tc:~T (55) 

Furthermore, the orbitals O~ and Of ~ S will be transferable from the pattern 
closed shell molecule 

o'{T~o~T~oP. (56) 

By an argument entirely analogous to the closed shell case, T,,~ and all sums ~S 
cancel giving 

F ~ - F ~ .  ~ ~, l , ( t x u [ o T r o ' } r ) +  Y. l~( lx~, lo~ro~' r )  - E (,~lZAl,.,> r 
i $ S  i~S  A ~ S  rA 

- 2 Z,(~o?TI~,oU)+ E t,(~o~l,,o~). 
i ~ S  i~S  

(57) 

The terms for P have already been considered in the closed shell case. The 
exchange term for T is similarly small. For the Coulomb terms the number of 
terms over 07' differs from that over 0f as the extra a spin electron is included 
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in the former. However,  just as for the closed shell case, each atom ~S is formally 
neutral and the number of electrons in 0~' and 02 around each atom A balances 
Z a .  Thus 

F ~ T  __ I~,P ,-~ 0 .v - , ,~  v. (58) 

3 . 2 .  S p i n  R e s t r i c t e d  

In the spin restricted formalism, the wave function is given by 

tO = A{r . "  Cm(2m -1)acbm(2m)flr  + 1)} (59) 

where the number of electrons is 2m + 1, m orbitals are doubly occupied and 
one orbital r is singly occupied. The orbitals are expanded in the usual way 
over the basis X,. The solution of the usual variation problem is not unique; it 
can, as described in Ref. [13], be carried out in matrix form where the associated 
Hamiltonian matrices are defined in several ways. All these matrices can be 
defined in terms of the two matrices F and z ~  and it is elements of these that 
are transferred in the SAMO method. They are defined as: 

A rA i=1 

- ~. (~61 [ t,r Ir Ivds) (60) 
i=1 

AF. .  = l(tzr I vr (61) 

The sets of delocalized orbitals, r and r can be localized separately. Since r 
is a single orbital already well localized no localization is necessary. The set r 
is transferred into a localized set 0~ by means of some unitary transformation L 

0 = L~b (62) 

giving 

0 = A { O ~ ( 1 ) a ~ ( 2 ) ~  �9 �9 �9 O m ( 2 m  - 1 ) a O m ( 2 m ) ~ r  (2m + 1)} 

= - 2  6*lZ"l >+ 2 2(txv IOiOi) 
r A  i=1 

- 2 I,,r 
i=1 

(63) 

(64) 

The actual transference of Fock matrix elements is carried out in a manner 
identical to that used in the spin unrestricted case. Thus both an open and a 
closed shell pattern molecule is used, and again we deal with the two cases 
separately. 
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3.2.1. Open shell P 

Elements of bo thF  and adv' are transferred. For both target and pattern molecule 
the matrix element can be divided into sums inside and outside the common 
area S. 

F~r~ = T ~ -  E <~lZAI,,)~+2 E l,<t,.loToT) 
AeS rA ieS 

E z,<,~oUI.oU>+<~.lCs%U>-~<~r E <~lZal~'> ~ 
i e S  AcAS r A  

+2 E lg(t*uloroT> - E l,(t*O?luOr). 
i~S  i~S  

(65) 

F ~ .  Those terms involving A similar expression can be written for the element e 
Cs can be considered along with all other terms e S in both F~v and Fe~v and, 
as was the case previously, all terms eS cancel in the difference F ~  -Fe~  since 

0T--= 0f (66) 

0[~r (67) 

Thus 

Fr~-FP~ ~2  E l,(IxuiO~O~)- E <~I~AI~> ~ 
i~S  A ~ S  r A  

- 2  E li(t*uiOfO[> + E (/xlZalu) P 
i~S  AgeS r A  

- y t,<~,0~[ ~0r>+ Y 4<gofl,of>. 
i~S  i~S  

(68) 

Since Eq. (68) is identical to Eq. (22) we have, using the same reasoning as was 
used for Eq. (22), 

F~r~ -FP~ ~0.  (69) 

The term in AF, v lies inside the common segment S so, using Eq. (67) we have 

aFL -m~L ~-o. (70) 

3.2.2. Closed shell P 

Here, F~rv is transferrred from FPv using a closed shell calculation for P while 
AF~rv is neglected. The element F,r~ is split over terms inside and outside S to 
give Eq. (65). Now, however, terms involving 6s are grouped with terms outside 
S. 
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The element FP~ is given by Eq. (53). Again, the terms T,,  and those sums 
over atoms and 01 inside S cancel giving 

F~,r~-FPv =2 ,,~E l,<~,,IoToT>-,~,~E <~ I~1,,> T 

- 2  E t,(~.,Iofof:>+ E <~IZAI.T 
i ~ S  A ~ S  rA 

- E t,<~ofl,,oT)+ E t,<~oFI,,of). 
i ~ S  ieAS 

(71) 

Eq. (71) is similar in form to Eq. (23). The Coulomb term in ~ is grouped 
with terms o f  around the terminal carbon atom to balance out the nuclear 
attraction term. Thus 

F~,r~ -F,ev =0.  (72) 

The term ZkF~ is given by Eq. (61). Since ~s lies outside S this exchange term, 
along with all the other exchange terms, is small, so 

~ r  =0.  (73) 

4. Two Difficult Cases 

Studies on cyclohexane [10], benzene [9] and pyrazine [16] as target molecules 
have shown that larger errors arise with SAMO calculations on ring compounds 
built from chain pattern molecules than arise in other applications of the method. 
For cyclohexane [10] an empirical correction was introduced using the concept 
of splitting the Fock matrix element into "through bond" and "through space" 
contributions. We now show that the present analysis justifies this correction 
and that the large errors in benzene and pyrazine are to be expected. 

4.1. Cyclohexane 

In the simulation of an ab initio calculation on cyclohexane using butane as the 
pattern molecule an empirical correction was introduced for the Fock matrix 
element f = F,v where the atoms of cyclohexane are labelled as shown below 
with X~ E A and X~ e D. 

A 
~CH2 

B0~22 ~CH2 B 
I I 

cCH2 ell2 C 
~CH~ 

D 
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Since there are two bonding pathways f rom A to D we may write f as 

f = 2b + s. (74) 

where b is a bonding pathway contribution and s a direct space contribution. 
For butane we have 

f = b + s. (75) 

The direct space contribution was estimated f rom a pair of methane  molecules 
positioned to mirror  the groups A and D. The  resulting empirical correction 
was thus 

f c  = 2fB _ f M  (76) 

where fc ,  fB and fM are the matrix elements for cyclohexane, butane,  and the 
methane  pair respectively. 

Although it results in corrections that work well, this approach is unsatisfactory. 
In order to analyse this problem in terms of our present  study we introduce the 
three systems illustrated in Fig. 5. 

Each system in Fig. 5 is divided into labelled common segments. For simplicity 
we chose a symmetric  f where 

f c  = F~, X~ ~ A ;  X,, ~ B (77) 

e.g. X, = 2s on CA 

X~ = 2s on CB. 

In a non symmetric  case, i.e. where X~, and X~ are not symmetric on the plane 
A B ,  the butane pat tern  positioned to the left of the A ' B '  plane must  also be 
considered. In each case the molecular orbitals are transferred into localized 
orbitals. For a segment X we now define 

Y x  = -  X (~lZAlv) + 2  X l, Ozu[O,O,) 
A ~ X  FA i ~ X  

- E l,(tzO, lvO,). (78) 

Here  l; is 1 if 8g is entirely inside X and �89 if 0~ crosses the segment  boundary.  
Using this simplified nomenclature  the three relevant Fock elements become 

f c  = T c + YA + YB --k Yc  + Yo  (79) 

A 
"~L. CH2. 

El i ID 
CH2 . ' .  CH2 

.--~CH'~.. 
B 

A t A "  

CH2 . . .CH2 . 
E' H ";~" - ..- "<' ,C H 2 E" H,P'<" - .. "<'- H 

- - . .  ID'  
F , H ~ . ; - . x C H 2  F,,H "'.>C" H 

�9 CH2"" " ":"<C H2~ "" 
B' B" 

Fig. 5. Illustration of systems used in the analysis of the cyclohexane problem 
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fB = TB + YA'+ YB'+ Yo '+ Y~z,+ YF' 

fM = TM + YA"+ YB',+ Y~.+ Yv"+ YG"+ YH o 

where the kinetic energy term for a general system U is 

TV=T,,. 

B. J. Duke and B. O'Leary 

(8o) 

(81) 

(82) 

YA.~ YA,-~ YA,, 

YB-~ YB,~- YB,, 

YD= YD~ Yc 

YE,= Yz.= Yc,, 

Y F ~ Y F , , = Y H  ,, 

(exact equalities arise from symmetry). 

Thus 

f c  ~ 2fB __ fM. 

If localized orbitals are transferable between the three systems and, where 
appropriate,  the geometries are identical, the three kinetic energy terms T c, T B 
and T M are equal and 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

Hence,  the empirical term introduced previously is correct if localized orbitals 
are transferable. A similar analysis holds for the non symmetrical matrix element. 

4.2. Benzene 

Benzene [9] and other aromatic hydrocarbons [9, 14] have been simulated from 
butadiene having a benzene-like geometry. Localized orbitals can be formed for 
benzene, the ~- orbitals being localized in either Kekule structure. The transfer- 
ence of a 1,4 symmetric matrix element is illustrated in Fig. 6, where a grouping 
similar to that in cyclohexane is used. 

Defining the Fock matrix element for benzene as f z  and for butadiene as fo ,  
we have 

f z  = T Z  + YA + YB + Yc  + YD (89) 

fD = T B + YA'+ Yn'+ YD'+ Yz '+ YF'. (90) 

A A' 

cll i I~ ,. Io' 

B B' 

Fig. 6. Illustration of the transference of a 1,4 symmetric matrix element in benzene 
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If localized orbitals are transferable 

YA'~Ya' 1 Y., YB ~ (91) 

Yo-Yo ,  

and 

fz  _fD = Yc -  Yz, + Y~,. (92) 

Although all the Y terms are comparable to terms outside the common segment 
discussed above, in the case of a compact ring system such as benzene they are 
not likely to be negligible. Here,  in contrast to the situation for cyclohexane, no 
correction for the " through space" contribution appears possible since no suitable 
pattern system can be formulated. Thus, the increased errors arising with ring 
systems are to be expected. The error given by Eq. (89), although fairly small, 
will be larger than corresponding terms for more open systems. 

5. Conclusion 

We simplify the equations arising from our discussion of the closed shell case 
by using the Yx term defined above for cyclohexane. Thus, where the region 
----S is the complement of S, i.e. the atoms and localized orbitals not contained 
in the common segment S, the Fock matrix element F~, may be expressed as 

F~ = T~. + (Ys)g. + (Y~s))~. (93) 

This gives the error F~ .  - F ~ v  as a sum of short and long range terms 

yT yP yT p FT.-F[.=[( s).v-( s)~.]+[( ~s)~.-(Y-s)~.]. (94) 

In light of this, the SAMO approximations may be summarized as 

1) The use of identical geometries and bases sets in the common segment S 
defined for each matrix element F~.. This results in an exact cancellation of 
kinetic energy integrals and nuclear attraction integrals over atoms within the 
common segment. 

2) An assumption of transferability of localized orbitals within the common 
segment arising from the selection of a pattern molecule with a chemical and 
bonding environment closely similar to that found within this segment of the 
target molecule. This completes the cancellation of terms within the first bracket 
of Eq. (94). 

3) The neglect of long range terms by separate cancellations within each of the 
terms in the second bracket of Eq. (94). 

4) The neglect of matrix elements F . .  where the orbitals X. and X. are at a 
sufficiently large distance as to render them unobtainable from the pattern 
molecules. 



240 B.J. Duke and B. O'Leary 

This point is not covered by the present analyses as it is dependent  on the choice 
of the pattern molecule. The size of pattern molecule is thus crucial in determining 
the number  of neglected matrix elements as well as the size of the error in 
transferred matrix elements. 

An analysis entirely similar to that for the molecular case can be used to justify 
the application of the SAMO method to infinite polymers. The main difference 
here being that the term YT s now contains infinite sums and, where X, and X~ 
are distant, an infinite number  of F,v terms are neglected. As, however, we shall 
see, these SAMO approximations now have counterparts in the ab initio case. 

For polymers with translational symmetry using Block orbitals we solve 

F(k )C(k ) = 8(k )C(k )k(k ) (95) 

in both the ab initio and SAMO methods. Here  the C(k) elements are defined 
by the expansion of the crystal orbitals 

+.A r 

Oi(k) = ( 2 Y +  1) -1/2 E ~ ,k# i C,p(k)e X,  (96) 
j = - - W ~ = I  

where the translational cells labelled j each contain a basis of n orbitals )r 

+ W  

F,v  (k) ~ ikjr.-.i = e r , v  (97) 
] = - W  

where 

= (x.lFlx.) 
+ W  

S.v(k)= E eikirs~v 
j ~ - W  

where 

(98) 

(99) 

s L  = <x ~ Ixs (100) 

While in theory W should be allowed to increase to infinity, in practice the sums 
have to be truncated at N. Indeed, in the many ab initio cases where N is only 
1 or 2 the order  of the neglected matrix elements F ~  ( / ' < - N  or f > N )  is 
similar to that of the SAMO method. Thus approximation (4) is a feature of 
both ab initio and SAMO polymer calculations. 

Using a nomenclature similar to that of Piela et al. (3) we express the retained 
t e rms  Flpq as 

W 

F ~ = T ~ -  • •ZAV,(h,A) 
h = - N  A 

,a r dr" 

D ~[2(,..1 (,~x[ .,~)]- (101) + E E E E ~' o j~) ,~_oaj  
h = - N  1 = - N  X o- 
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Again, these sums must be truncated by a partition 

F~v i ] = F ~ ( < ~ N ) + F ~ ( > N ) .  (lo2) 

Here, F/,~ (~<N) is the term left after truncation to N cells either side of the 
reference cell 0 and F~,~(>N) is the error term. We note that Piela et al. [30] 
and other workers use C ~  for F / ~ ( > N )  in Eq. (102), a term that has, until 
recently, been neglected. Truncation and hence partitioning can be carried out 
in a number of ways fully described by Karpfen [31] and Kertesz et al. [32]. Eq. 
(102) with its division between short range and long range terms is entirely 
analogous to Eq. (93); T,~ in Eq. (93) is, of course, included in the short range 
term. Evaluation of the long range term using multipole expansions has recently 
been proposed by Delhalle et al. [33] and extended by Piela et al. [30]. Approxi- 
mation [3] of the SAMO method is thus equivalent to the neglect of multipole 
terms. Work is in progress to include these in the SAMO method, particularly 
for polymers. As a consequence of this analysis it is clear that, at least for 
many of the published ab initio polymer calculations, the SAMO method is 
closer to the ab initio method for polymers than it is to the ab initio method for 
molecules. 

Analysis of the open shell cases, while apparently more complex, involves 
essentially the same approximations as discussed for the closed shell system. 
Additional but minor approximations arise only from the particular nature of 
the molecular systems studied. Our present study serves to clarify the rather 
limited application of the SAMO method to open shell systems. One particularly 
pleasing aspect of our analysis is that previous ad hoc approximations introduced 
for ionic molecules and cyclic systems, since they are now seen to be justified 
by the same analysis used for more normal systems, are no longer ad hoc. 

Finally, while the present analysis is expressed in terms of the SAMO method, 
it is equally applicable to other related methods involving the transferability of 
Fock matrix elements. The poor performance of the NEMO method [2] can be 
readily explained when it is realized that the common segment for transfer of 
the diagonal matrix elements is often as small as a single atom. The method 
using a basis set of localized orbitals developed by Peeters, Leroy and Clarisse 
[5, 19, 20] and recently extended by them [34] can be analysed in an identical 
manner. The molecular orbitals are expressed as a linear combination of localized 
orbitals which are transferable from a pattern to a target. The basis set thus has 
the same properties for this analysis as the SAMO basis and the matrix elements 
F,v over this basis can be partitioned as in Eq. (93). The localized orbitals 
introduced in the definitions of Ys and Y ~ s  are now, in principle, distinct from 
the localized orbitals used as the working basis and may be assumed to have 
been generated by a different localization technique. In practice, of course, the 
two sets of localized orbitals may be similar but this is not required. Leroy et 
al. [34] experience the same problems in obtaining a good simulation for polynu- 
clear hydrocarbons as are found with SAMO in spite of using naphthalene as 
pattern molecule. 
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This analysis provides an understanding of the transferability of Fock matrix 
elements and methods of calculation based upon the transferability. It also 
provides guides for the development of improvements to such methods. 

Appendix  A 

Occupied localized orbitals 0p are formed from occupied molecular orbitals &~ by 

Op = Y. Lpd)i (la) 
i 

with 

(00 I Oq) = 6pq ; (&~ I d&) = 6,j (2a) 

i i 

= ~. L p i L o l .  
i 

.'. L L  T = 1 L is unitary 

.'. since0=Ldo, d0=LT0 

(3a) 

~)i = ~ ZpiOp.  
p 

The Fock matrix element in terms of the & bases is 

(4a) 

F,.v = H.~  + Y~ {2(/zv [&~&,)(tz&, [ v&,)}. 
i 

Using Eq. (4a) 

F~ = H,~. + 2  ~ Y.. LpiLqi{2(lzv ] OpOq)-(IxOp l vOq)} 
i p q 

p 

= H.~ +Y. Y~ 6pq{2(lxv ] OpOq) - </zOo [vOq)} 
p q 

p 

Therefore the Fock matrix element in terms of the 0 basis takes exactly the 
same form as in the do basis. 
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